HOME WORK V, HIGH-DIMENSIONAL GEOMETRY AND PROBABILITY, SPRING 2018

Due April 3 (extended deadline, long break, hence bigger home work:)). All the questions marked with an asterisk(s) are optional. The questions marked with a double asterisk are not only optional, but also have no due date.

Question 1. Show that in general (non-symmetric) case, the maximal volume ratio of K is achieved when K is a simplex.

Question 2*. Let $Q = [-\frac{1}{2}, \frac{1}{2}]^n \subset \mathbb{R}^n$ and let H be an (n - k)-dimensional subspace. Prove that $|Q \cap H|_{n-k} \ge 1$.

Question 3. Let $Q = [-\frac{1}{2}, \frac{1}{2}]^n \subset \mathbb{R}^n$ and let H be an (n - k)-dimensional subspace. Show an alternative upper bound for the slices of the cube:

$$|Q \cap H|_{n-k} \le \left(\frac{n}{n-k}\right)^{\frac{n-k}{2}};$$

for what values of k is it an improvement upon $\sqrt{2}^k$? What does it approach as $k \approx n$? Hint 1: Consider the dual situation: project onto H, and let $w_i = e_1|_H$; show that

$$|Q \cap H|_{n-k} = \int_H \prod_i \mathbb{1}_{[-\frac{1}{2},\frac{1}{2}]} (\langle x, w_i \rangle) dx.$$

Hint 2: Suppose $c_i \ge 0$ for i = 1, ..., n and $\sum c_i = A$. Show that

$$\prod_{1}^{n} c_{i}^{c_{i}} \ge \prod_{1}^{n} \left(\frac{A}{n}\right)^{\frac{A}{n}}$$

Question 4^{*}. Let θ be a random vector uniformly distributed on \mathbb{S}^{n-1} . Find $\mathbb{E}|Q \cap \theta^{\perp}|_{n-1}$, up to 1 + o(1) multiplicative factor.

Question 5. Suppose a convex body K contains a ball of radius R > 0. Show that

$$\gamma^+(\partial K) \le \frac{\sqrt{n}}{R}.$$

Hint: How to bound the support function from below in this case?

Question 6. Suppose C is a convex cone with a vertex at the origin. a) Show that $\gamma^+(\partial C) \leq 10$. b)** Find the exact constant $\sup_C \gamma^+(\partial C)$.

Hint: How to bound the support function from above in this case?

Question 7*. Let $P = \prod_{i=1}^{n} \left[-\frac{x_i}{2}, \frac{x_i}{2}\right]$ be a regular parallelepiped. a) Find $\max_{u \in \mathbb{S}^{n-1}} |P \cap u^{\perp}|_{n-1}$. b)** Find $\max_{H} |P \cap H|_{n-2}$, where the maximum runs over subspaces H of co-dimension 2.

Question 8^{**} . For convex regions $K \subset \mathbb{R}^2$, find *exactly* $\gamma^+(\partial K)$.

Question 9^{**} (credit goes to Josiah Park). How big, and how small can $\frac{vr(K)}{d_{BM}(K)}$ be? You may assume symmetry.