HOME WORK V, HIGH-DIMENSIONAL GEOMETRY AND PROBABILITY, SPRING 2018

Due April 3 (extended deadline, long break, hence bigger home work:)). All the questions marked with an asterisk(s) are optional. The questions marked with a double asterisk are not only optional, but also have no due date.

Question 1. Show that in general (non-symmetric) case, the maximal volume ratio of K is achieved when K is a simplex.

Question 2*. Let $Q=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \subset \mathbb{R}^{n}$ and let H be an $(n-k)$-dimensional subspace. Prove that $|Q \cap H|_{n-k} \geq 1$.

Question 3. Let $Q=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \subset \mathbb{R}^{n}$ and let H be an $(n-k)$-dimensional subspace. Show an alternative upper bound for the slices of the cube:

$$
|Q \cap H|_{n-k} \leq\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}}
$$

for what values of k is it an improvement upon $\sqrt{2}^{k}$? What does it approach as $k \approx n$?
Hint 1: Consider the dual situation: project onto H, and let $w_{i}=\left.e_{1}\right|_{H}$; show that

$$
|Q \cap H|_{n-k}=\int_{H} \prod_{i} 1_{\left[-\frac{1}{2}, \frac{1}{2}\right]}\left(\left\langle x, w_{i}\right\rangle\right) d x .
$$

Hint 2: Suppose $c_{i} \geq 0$ for $i=1, \ldots, n$ and $\sum c_{i}=A$. Show that

$$
\prod_{1}^{n} c_{i}^{c_{i}} \geq \prod_{1}^{n}\left(\frac{A}{n}\right)^{\frac{A}{n}}
$$

Question 4*. Let θ be a random vector uniformly distributed on \mathbb{S}^{n-1}. Find $\mathbb{E}\left|Q \cap \theta^{\perp}\right|_{n-1}$, up to $1+o(1)$ multiplicative factor.

Question 5. Suppose a convex body K contains a ball of radius $R>0$. Show that

$$
\gamma^{+}(\partial K) \leq \frac{\sqrt{n}}{R}
$$

Hint: How to bound the support function from below in this case?

Question 6. Suppose C is a convex cone with a vertex at the origin.
a) Show that $\gamma^{+}(\partial C) \leq 10$.
$b)^{* *}$ Find the exact constant $\sup _{C} \gamma^{+}(\partial C)$.

Hint: How to bound the support function from above in this case?

Question 7^{*}. Let $P=\prod_{i=1}^{n}\left[-\frac{x_{i}}{2}, \frac{x_{i}}{2}\right]$ be a regular parallelepiped.
a) Find $\max _{u \in \mathbb{S}^{n-1}}\left|P \cap u^{\perp}\right|_{n-1}$.
$b)^{* *}$ Find $\max _{H}|P \cap H|_{n-2}$, where the maximum runs over subspaces H of co-dimension 2.

Question $8^{* *}$. For convex regions $K \subset \mathbb{R}^{2}$, find exactly $\gamma^{+}(\partial K)$.

Question $9^{* *}$ (credit goes to Josiah Park). How big, and how small can $\frac{v r(K)}{d_{B M}(K)}$ be? You may assume symmetry.

